Скидка ­ 50 %

Подключение трехфазного автомата в щитке


5 вариантов трехфазной схемы распределительного щита.

Все распределительные щиты должны выполнять 3 основные задачи:

  • защита кабеля от перегрузок и КЗ

С этой целью в щитах монтируются автоматические выключатели. Они в первую очередь предназначены именно для защиты кабеля, а не подключенного к ним оборудования, как многие до сих пор думают. При перегрузках, при перегреве срабатывает тепловой расцепитель и защищает от оплавления изоляцию проводки. При явном КЗ срабатывает уже не тепловой, а электромагнитный расцепитель.

  • защита человека от поражения электрическим током

Обеспечивается она путем установки УЗО или дифф.автоматов.

  • защита техники от перепадов напряжения

К сожалению, в наших сетях зачастую происходят скачки напряжения. Автоматы на это не реагируют, так как просто не рассчитаны на такую защиту.

УЗО также не приспособлено на срабатывание от перенапряжения. Для этого понадобятся модульные реле напряжения или УЗМ – устройства защиты многофункциональные.

На них выставляются определенные верхние и нижние пределы по напряжению. Как только произошел скачок, или наоборот резкое снижение параметров эл.сети, данное реле (УЗМ) срабатывает и отключает питание.

Чем же отличается сборка 3-х фазного щита, с условием обеспечения вышеперечисленных задач, от сборки однофазного? Понятно, что однофазный на порядок проще трехфазного.

Там есть только единственная фаза, ноль и защитное заземление. В 3-х фазном, к вам в щит приходит те же ноль, защитное заземление и уже 3 фазы.

С одной стороны это дает вам возможность подключать гораздо большую нагрузку, и получить у энергопередающей организации большую мощность для подключения. Но с другой стороны, это всегда несет и большие затраты, плюс необходимость грамотного распределения этой самой нагрузки.

В результате, напряжение на одной из них будет низким, а на двух других подскочит на несколько единиц или даже десятков вольт. Конечно, можно самого себя от этого защитить, установив соответствующие приборы (например переключатели фаз), а вот ваши соседи из-за неграмотно собранного 3-х фазного щитка будут страдать.

Причем не по своей вине или вине энергоснабжающей организации, а именно из-за вас.

Есть множество вариантов сборки и комплектации трехфазных щитков. Не будем рассматривать самые простейшие с минимальным количеством вводного оборудования.

Выберем более сложные по комплектации, но в тоже время достаточно универсальные. В связи с резким увеличением количества эл.приборов в наших квартирах и домах, они в последнее время приобретают все большую популярность.

Преимущества:

  • каждая линия защищена как от КЗ, перегрузок, так и от утечек. И все это одни аппаратом.
  • проще установить проблемную зону при повреждениях
  • у вас полная свобода в группировке аппаратов в щите
  • легко распределять нагрузку по фазам
Недостатки:
  • большие габариты щита и большое количество модульных устройств (от 72шт и более)

Дифференциальный автомат это оборудование, которое ставится на отдельную линию, как обычный автомат, но еще включает в себя и защиту от утечек (дифф.защиту).

Это хоть и самый лучший вариант, но и самый дорогой. Поэтому используется крайне редко.

Условно говоря, сколько у вас будет отходящих групповых линий, столько же понадобится дифф.автоматов.

При этом, чтобы при возможных авариях понять, от чего отключился такой автомат, от утечки или КЗ, рекомендуется использовать модели с индикацией причины срабатывания.

В начале схемы монтируется вводное устройство – рубильник. С него пускаете питание на реле напряжения.

Далее, через кросс-модули разделяете нагрузку на диффы. На каждый автомат пускаете по одной фазе.

Если в последствии окажется, что та или иная линия перегружает какую-либо из фаз, вам достаточно на одном из кросс модулей просто поменять их местами, перекинув провода с одной шинки на другую.

Если вы не ограничены бюджетом, то это самый лучший вариант сборки и комплектации трехфазного щитка.

Преимущества сборки:

  • требуется щиток небольших размеров (от 54 до 72 модулей)

Недостатки:

  • не наглядная группировка линий
  • невозможность простого внесения изменений в перераспределении нагрузки по фазам

Это один из простых и наиболее распространенных вариантов сборки и проектировании трехфазных щитков. Объясняется это конечно его дешевизной по отношению к остальным.

Тот, кто изначально проектирует щит, он исходя из тех или иных соображений и технических условий, делит соответствующим образом нагрузку по фазам. Как ему кажется, соблюдая равномерность.

Однако это все предварительное деление. Так как реального потребления никто не знает. И только со временем, путем замеров можно увидеть фактическую картину. А она может существенным образом отличаться от ранее спроектированной.

И чтобы хоть как-то подравнять нагрузки, приходится переделывать чуть ли не половину всего щитка. Оставите как есть, и обязательно в будущем столкнетесь с проблемами:

  • перекос напряжения
  • нагрев нулевой шинки с возможным отгоранием ноля
  • перегруженные автоматы и последствия этого

Есть еще более упрощенный вариант данного способа комплектации.

Преимущества:

  • щит малого размера (до 32 модулей)

Недостатки:

  • практически отсутствует группировка линий
  • отсутствует возможность изменения нагрузки по фазам
  • присутствуют нулевые шины
  • возможно ложное срабатывание УЗО

Здесь используется всего одно УЗО на вводе (кроме не отключаемых потребителей) и уже далее, нагрузка распределяется через однополюсники. Согласно п.7.1.83 ПУЭ вы можете быть ограничены в выборе количества подключаемых линий.

Если же проигнорировать данное правило, то вполне вероятны ложные срабатывания УЗО. При этом вы долго будете ломать голову прикидывая, сработало оно от защиты или же ложно.

Поэтому лучше искать промежуточные варианты комплектации трехфазного щитка.

Преимущества:

  • возможность легко распределять нагрузку по фазам
  • наглядная группировка линий
  • удобное подключение питания и отходящих проводников
Недостатки:
  • габаритные размеры щитка (от 96 до 144 модулей)

Когда вы собираете щит по первому варианту на дифф.автоматах, вы пропускаете через него фазный и нулевой проводник. Плюс отпадает необходимость в УЗО.

Если по экономическим причинам вы не можете себе позволить дифференциальные автоматы, группировать отходящие линии все равно придется на УЗО.

Однако для того, чтобы впоследствии все было ремонто-пригодно и легко вносились изменения в схему без ее кардинальных реконструкций и перемонтажа проводов, вместо обычных однофазных модульных автоматов достаточно применить двухполюсные.

Внешне они выглядят как собранные воедино два одинарных модульных однополюсника.

Для сборки схемы соединяете между собой нули в той или иной группе 4-х полюсных УЗО. Через них пропускаете все фазы и далее пускаете их на кросс модули. После чего фазы распределяются по автоматам.

Преимущества:

  • возможность внесения изменений по фазам
  • щиток средних размеров (72-102 модуля)
Недостаток:

Фактически здесь получается некая смешанная схема, с достоинствами и недостатками всех предыдущих. Условно, несколько групповых линий будет жестко подключено на однополюсные автоматы, без возможности внести в будущем какие-либо изменения по распределению нагрузки.

Но зато, какую-то другую группу, например ”розетки” или ”освещение”, вы пускаете таким образом, чтобы через кросс-модули в дальнейшем, можно было поменять загрузку той или иной фазы.

Все это делает трехфазный щит немного меньших размеров, плюс гораздо дешевле. Зато он здорово выигрывает в ремонтопригодности и в плане внесения изменений в существующую схему электроснабжения.

domikelectrica.ru

Схема электрического квартирного щитка — однофазный вариант

Перед тем как физически монтировать распредщиток у себя в квартире, нужно точно определиться на бумаге со схемой электрощитка. Какое модульное оборудование ставить, сколько и каким номиналом будут автоматические выключатели, монтировать ли диф.автоматы и УЗО? В какую цену обойдется та или иная комплектация? Большинство этих вопросов с приведением самих схем будет отображено в статье.

Стоит заметить, что все нижеприведенные схемы предназначены именно для однофазных квартирных щитков непосредственно расположенных у вас в квартире. Предполагается что щиток учета со счетчиком и вводным автоматом уже стоит в этажном щите. Соответственно его изображение на схемах не присутствует.

Нормативные документы и правила по щиткам

Все схемы и квартирные щитки должны собираться в соответствии с нормативными документами и не противоречить прописанным там указаниям и правилам. Прежде всего это конечно ПУЭ, но есть еще два документа на которые стоит обратить пристальное внимание:

  • ⚡ГОСТ 32395-2013 Щитки распределительные для жилых зданий. Общие технические условия. (скачать)
  • ⚡Свод правил по проектированию и строительству СП 31-110-2003 «Проектирование и монтаж электроустановок жилых и общественных зданий» (скачать)

Требования из правил по квартирным щиткам

Замечания и требования из вышеуказанного ГОСТ на которые стоит обратить внимание при сборке и выборе квартирного щитка:

Упрощенная схема квартирного щитка

Схема №1

Данная схема подходит для небольших одно или двух комнатных квартир. Там где общая длина всех проводов и кабелей не превышает 300-400м.

На вводе стоит выключатель нагрузки, а не автомат. Если на этажном распредщите у вас уже смонтирована защита, после или до счетчика (проверьте это перед тем как собирать данную схему), то ставить автомат еще и на вводе не обязательно. Чем лучше выключатель нагрузки от автомата можно узнать из статьи Модульный выключатель нагрузки или вводной автомат.

Номинальный ток вводного аппарата для квартир с эл.плитами и однофазной нагрузкой должен быть от 40А и выше.  Снизу обозначены групповые кабели запитывающие те или иные группы, с указанием марки кабеля и его сечения в зависимости от нагрузки. Отходящие цепи освещения выполненные кабелем 1,5мм2 защищаются автоматом 10А, розеточные группы сечением 2,5мм2 — 16А.

На дифференциальный автомат подключен санузел, т.е. розетки, освещение и все потребители в ванной совмещены в одну группу. Причем ток утечки на диффе выбран 10мА.

Некоторые электрики ставят на 30мА, мотивируя это возможными ложными срабатываниями. В правилах нет конкретного запрета, оговаривается что данная защита не должна быть более 30мА. Почему все таки лучше поставить на 10мА, можно понять ознакомившись с тем, как ток определенной величины влияет на ваше тело: 

Правда в магазинах чтобы прибрести диф.автоматы на 10мА, скорее всего придется делать заказ. В основном в свободной продаже преобладают именно устройства с током утечки на 30мА.

Варочная панель и духовой шкаф запитаны по отдельным группам, подразумевается что это два разных потребителя. Если у вас эл.плита, то есть когда варочная с духовкой вместе, нужно менять питающий кабель и автомат защиты:

Схема №2

Если вас беспокоят перебои с напряжением и вы хотите защитить свое оборудование от его скачков, тогда можно немного увеличить стоимость схемки, добавив на ввод реле напряжения. Здесь схематично изображено реле марки УЗМ-51М, как наиболее простое в подключении (вход-фаза+ноль и выход-фаза+ноль).

Схема №3

Плюсы данных схем:

  • ⚡недорогая
  • ⚡оптимальный вариант для маленьких квартир
  • ⚡проста в монтаже и подключении

Большой минус схемы в том, что при утечке тока в других линиях кроме санузла, защита работать не будет.

Данную схему можно улучшить поставив на ввод УЗО. Перед этим убедитесь, что в этажном щите где расположен ваш счетчик, установлен автоматический выключатель, так как УЗО без автомата ставить запрещено. Если там уже стоит УЗО или дифавтомат, то дублировать защиту не имеет смысла. Схемка с УЗО на вводе будет вот такой:

Схема №4

Один нюанс — если у вас общий расход кабеля в проводке квартиры от 400м и более, то возможны ложные срабатывания вводного УЗО из-за суммарных утечек тока. Здесь уже целесообразно применить УЗО на отдельные группы, убрав из схемы квартирного щитка вводное.

Схема электрощитка в квартире с УЗО в отдельных группах

Схема №5

Данная схема уже более совершенна. Ее можно применять как в небольших квартирах, так и в квартирах с общей длиной проводки превышающей 400м. Здесь нет вводного УЗО, так как достаточно выключателя нагрузки (не забывайте про автомат в этажном щите со счетчиком).

Номинальный ток вводного аппарата выбран исходя из разрешенной мощности для квартир с однофазной нагрузкой равной 11квт и коэффициенте спроса для квартир повышенной комфортности — 0,8.

Присутствует защита от утечек тока на отдельных группах розеток и сплит системы (кондиционера). Причем один защитный аппарат УЗО стоит на объединенных группах, каждая из которых в свою очередь защищена от перегрузок автоматическими выключателями. Особо стоит отметить, что каждому отдельному УЗО нужна своя шинка для нуля. Иначе они будут все вместе синхронно срабатывать в случае утечки в любой группе кабелей. А вам чтобы найти поврежденную проводку, придется физически отсоединять нулевые жилы с шинок.

Линии освещения целесообразно защищать от утечек, если вы применяете настенные светильники с металлическими корпусами и периодически их протираете или меняете лампочки не выключая напряжение. В большинстве случаев здесь можно обойтись простыми автоматами.

Та же схемка, но с реле напряжения:

Схема №6

Цена комплектации квартирных щитков

Расценки только на комплектующее модульное оборудование (автоматы, УЗО, реле напряжения, выключатели нагрузки) разных производителей для сборки всех вышеприведенных схем сведены в одну таблицу. Цены взяты из интернет магазинов и в вашем регионе могут существенно отличаться.

Наименование схемыПроизводитель и цена
IEKABBLegrandSchneiderКЭАЗ
Схема №11700р6700р7300р4300р2100р
Схема №21600р6600р7200р4200р2000р
Схема №34200р9200р9800р6800р4600р
Схема №42400р6900р8100р5100р2700р
Схема №53400р9700р10300р7500р3700р
Схема №65900р12200р12800р10000р6200р

Все приведенные схемы являются лишь одним из множества вариантов компановки электрощитка в квартире. Целью статьи было показать их отображение в графическом виде и сделать примерное сравнение денежных затрат на модульное оборудование в том или ином исполнении. В каждом индивидуальном случае все должно просчитываться согласно нагрузкам, количества оборудования, физического места в распредщите и ваших финансовых возможностей.

domikelectrica.ru

Как подключить автоматический выключатель

Здравствуйте, уважаемые читатели и гости сайта «Заметки электрика».

Подключить автоматический выключатель может практически каждый, но зачастую выполняют это не совсем правильно.

Дело в том, что между электриками идут постоянные споры: кто-то питание подключает на неподвижные контакты, а кто-то на подвижные. Спорить не нужно, открываем ПУЭ и читаем п.3.1.6:

Почти во всех автоматических выключателях, УЗО и дифавтоматах неподвижный контакт располагается сверху.

Вот пример однополюсного автомата ВА47-29 С16:

Аналогично, у дифавтомата АВДТ 32, С16, 30 (мА):

Из  пункта 3.1.6. можно сделать вывод, что словосочетание «должно выполняться, как правило» носит скорее всего рекомендательный характер, т.е. не запрещает. Вот поэтому этим пунктом многие электрики и пренебрегают. В принципе это на работу автомата никак не влияет, он все равно отключится при коротком замыкании или перегрузе — неоднократно проверял сам лично.

Рассмотрим вкратце устройство модульного однополюсного автомата ВА47-29. Дело в том, что поверхность неподвижного и подвижного контактов имеют разнородные сплавы. Согласно заводским испытаниям IEK, при коммутации переменного тока выгорание обоих контактов идет равномерно, поэтому здесь не критично с какой стороны подключать питание. А вот при коммутации постоянного тока значительной величины периодически наблюдается перенос металла с одного контакта на другой, поэтому в этом случае питание нужно подавать только на неподвижные контакты.

Лично я сторонник того, чтобы питание всегда подавалось на неподвижные контакты с целью привести к однообразию (везде одинаково) все схемы подключения автоматических выключателей, особенно, в жилом секторе.

При этом повысится электробезопасность при обслуживании и эксплуатации электрических сетей, уменьшатся ошибки персонала при выводе в ремонт электрооборудования и т.д.

Перейдем к практике.

Подключение однополюсных и двухполюсных автоматических выключателей

Как правило, в однофазных сетях 220 (В) применяют однополюсные или двухполюсные автоматы. Если ввод в квартиру выполнен двумя проводами (фаза L — красный цвет, ноль PEN — синий цвет), т.е. у Вас система TN-C (читайте про нее более подробно), то схема будет следующей:

Питающая фаза подключается на клемму (1) вводного однополюсного автомата 40 (А), а далее с клеммы (2) проходит через однофазный счетчик и распределяется по групповым автоматам 16 (А). Питающий ноль проходит через счетчик и подключается к нулевой шине PEN.

Если ввод в квартиру выполнен тремя проводами (фаза L — красный цвет, ноль N — синий цвет, земля PE — желто-зеленый цвет), т.е. у Вас система TN-C-S или TN-S, то схема будет такой:

В этом случае питающая фаза подключается к вводному двухполюсному автомату 40 (А) на клемму (1), а ноль на клемму (3). С выходной клеммы (2) фаза проходит через счетчик, вводное УЗО 50 (А), 100 (мА) и распределяется по групповым автоматическим выключателям 16 (А). С выходной клеммы (4) ноль проходит через счетчик, вводное УЗО 50 (А), 100 (мА) и подключается на нулевую шину N.

Схема подключения трехполюсных и четырехполюсных автоматов защиты

Для подключения трехфазных двигателей применяются трехполюсные автоматы, например, ВАМУ-10.

На неподвижные контакты (1,3,5) подключается трехфазное питающее напряжение (А,В,С), а к подвижным контактам (2,4,6) подключается обмотка двигателя.

В трехфазных сетях с системой заземления TN-C, TN-C-S или TN-S также можно применять трехполюсные автоматические выключатели.

В трехфазных сетях с системой заземления TN-C-S или TN-S допускается устанавливать четырехполюсные автоматы. Они подключаются аналогично, только там добавлен еще один полюс «N».

Присоединение жил проводов и кабелей к автомату

У каждого автомата свои требования по подключению проводников: сечение, длина зачищаемой изоляции, тип соединения. Читайте паспорт — там все написано.

Например, для подключения автомата ВА47-29 С10 требуется зачистить жилу провода примерно на 0,7-1 (см).

Затем необходимо вставить ее в контактный зажим и зафиксировать с помощью винта.

После затягивания проверьте фиксацию провода путем легких подергиваний в разные стороны.

Если у Вас гибкий провод, то лучше применять наконечники соответствующего сечения.

Следите за тем, чтобы под контактный зажим не попала изоляция провода.

Не нужно сильно затягивать винт, т.к. это может привести к деформации корпуса автоматического выключателя. При деформации корпуса меняется положение внутренних токоведущих частей, что приводит к быстрому выходу его из строя или повышенному нагреву.

Как подключить несколько автоматических выключателей в одном ряду?

Если в одном ряду в щитке установлено несколько автоматов, то целесообразно соединить их между собой не перемычками из провода, а специальной медной соединительной шинкой (ШС) — «гребенкой». Она отрезается по нужной длине и подключает фазы ко всем автоматам в ряду в необходимой последовательности.

Более подробно о ней читайте в этой статье.

P.S. На этом я завершаю свою статью. Все имеющиеся у Вас вопросы задавайте в комментариях. Буду рад Вам помочь.

Если статья была Вам полезна, то поделитесь ей со своими друзьями:

zametkielectrika.ru

Бюджетный трёхфазный щит: Мастер-Класс

Я устал от виденья кривых трёхфазных щитов, которые ни разу не оптимальны, топорны и ужасны в плане использования людьми, ремонта, перераспределения нагрузки по фазам. В этой сфере кое-что тоже надо поменять и сделать более приятным и удобным как для тех людей, которые эти щиты разрабатывают, так и для тех людей, которые этими щитами будут пользоваться. Поэтому я продолжаю свой мастер-класс для того, чтобы научить людей делать простые, но адски злобные и гибкие трёхфазные щиты.

А перед тем, как добраться до теории, мы вспомним предыдущие посты, которые у меня были по этой теме. Во-первых, изначально про трёхфазные щиты был вот этот вот пост: «Силовой трёхфазный щит: методика разводки и сборки (на примере щита)«. Там я показывал то, как я собираю трёхфазный щиток на дифавтоматах DS201/202C серии, благодаря которым он получается гибкий и удобный для обслуживания. Во-вторых, следует читать пост про Мастер-Класс сборки щита, в котором я рассказывал всю общую теорию проектирования и сборки щитков: маркировку, документацию, соединения. Этот пост пригодится нам для освежения знаний по самому монтажу, которые я тут опущу.

Дополнение от марта 2017 года. В общем, эта трёхфазная бюджетная схема хороша только в плане стоимости материалов. А вот собирать этот щит и обслуживать его гораздо труднее, чем щит на дифавтоматах: ведь в щите на дифах у нас только один кросс-модуль, а в бюджетных трёхфазных  щитах кросс-модулей больше, и около них надо оставлять больше свободного места. А это сделает наш щит ещё больше. За что-то всё равно придётся платить: или за стоимость щита (на дифах) или за его размер (по бюджетной схеме). Сам я возвращаюсь на трёхфазные щиты на дифавтоматах типа «А», а трёхфазную бюджетную схему буду делать только если ситуация совсем безвыходная, а негативный опыт сборки трёхфазных бюджетных щитов описан вот тут.

Объявление от апреля 2017 года. Эта схема щитов изжила своё. Она очень помогла пережить шок от кризиса 2015-2016 года, но сейчас пора привыкать к новым ценам, и после того, как щит бани на 15 линий у меня получился с ПЯТЬЮ кросс-модулями и еле-еле уложился в AT52 (а лучше бы AT62), я перехожу обратно на дифавтоматы. Я использую серию DS201 на 6 кА и типа «А». Такие дифавтоматы стоят по 5-6 тыр за штуку, но окупается это следущими моментами:

  • Размер щита становится меньше. Ну или же в тот же размер можно внести побольше функций (автоматика, неотключаемые линии и прочее).
  • Внутри щита становится меньше проводов, потому что исчезают адские жгуты от УЗО до кросс-модулей и потому что кросс-модулей становится меньше.
  • Щит получается более логичным: кросс-модули будут нужны только для нужных видов питания (неотключаемое, сеть, генератор и так далее), а не для каждого УЗО, и в них никто не запутается.
  • Для пользователя получается то, что на каждую линию стоит своя полноценная защита: УЗО и автомат в одном корпусе. И если проблемы будут с одной линией — то она не повлияет на остальные. Особенно это актуально, если утечка на линии плавает: то появляется, а то нет. В случае с УЗО и автоматами это можно задолбаться искать, а в случае с дифами один из них просто отключится, даже если нет никого дома, а остальное будет работать.

Что касается денег — то виноватым себя за большую стоимость материалов я не считаю. Кризис миновал, цены поднялись и я вынужден работать по ним, потому что цены на материалы придумываю не я. На этом всё. С этого момента по умолчанию все трёхфазные щиты я считаю на дифах и только если ситуация СОВСЕМ безвыходная — то по бюджетной схеме. Но если вы на неё согласились — то будьте готовы к тому, что вместо щита у вас будет шкаф 2х1 метр.

А дальше мы перейдём к теории и глубоким пояснениям, почему трёхфазный щит будет более замороченным и что там надо учесть, чтобы он был удобен для людей и люди на него меньше матерились.

Часть 1. Теория разработки трёхфазного щита.

Что для нас является самым основным на свете после того, как мы правильно выбрали линии, их защиту и то, куда они идут и чего питают? Для нас самым основным является сделать так, чтобы щиток был понятен и удобен человеку. А от этого зависит расположение автоматов и их подписи. То есть, нам надо чтобы у нас сначала шли автоматы света, потом автоматы розеток, потом автоматы кухни, потом санузлов, потом всякой например климатической техники.

Вы помните, как мы собираем однофазный щиток (из прошлого мастер-класса)? Там всё просто: там мы сортируем автоматы линий как нам надо (потому что все линии сидят на одной фазе и в этом плане они все равны), а потом расставляем дифзащиту (УЗО) так, чтобы срабатывание одного УЗО не особо влияло на другие линии. Скажем, если отрубится вся кухня — то мы можем перетащить микроволновку и чайник в другую комнату и разогреть покушать. Или если отрубятся кондеи и тёплые полы — то нам будет пофигу.

Но а в случае трёх фаз у нас есть сразу две задачи, которые полностью противоположны друг другу по логике. Это та же задача распределить все линии по дифзащите и одновременно по разным фазам. И вот тут и начинаются сложности, потому что распределение по фазам нам даст одну логическую сортировку линий (например, Розетки Кухни и Питание Котла, Свет Улицы), а распределение для человека, которое самое главное, должно дать сортировку линий, которую я описывал выше.

И ведь нам надо расставить дифзащиту! Причём таким образом, чтобы при её наличии можно было бы менять распределение по фазам при помощи кросс-модулей. На всякий случай напоминаю, что кросс-модуль — это такая штуковина, которая содержит в себе две или четыре шинки, которые можно использовать для того, чтобы один раз подать на них фазы (фазу) и ноль, а потом из этой точки раздать их по остальным местам щитка. А если нам надо изменить распределение нагрузок по фазам — то достаточно выкрутить провод этой нагрузки из одной фазной шины и закрутить его в другую шину.

Итак, самое грамотное и правильное решение для трёхфазного щита — это собрать его на дифавтоматах. Например, серии DS201/202C. В этом случае мы делаем всё так, как я описывал в первом посте про сборку трёхфазного щитка, на который уже давал ссылку.

Мы ставим дифавтоматы в ряд и пользуемся тем, что у серии DS201/202C контакты одинаковые с автоматами серии S200. В этом случае мы можем даже комбинировать обычные двухполюсные автоматы серии S200 (S202) там, где дифзащита не нужна и дифавтоматы. Все их нули мы соединяем при помощи гребёнки.

Я использую гребёнку 2CDL210001R1057 PS1/57N, которая имеет синий цвет. Я попросил ABB поддерживать её в небольшом количестве на складе в Москве, и она часто бывает там в наличии и доступна для заказа. Я выкусываю из неё зубья через один и она становится годной, чтобы коммутировать нули.

Ну а фазы мы в этом случае подключаем каждую своим проводом от кросс-модуля. У нас получится такая картинка:

Такие щиты я всегда и собирал и по другому никогда не делал. Но сейчас шибанул кризис (и цены взлетели в два раза), а трёхфазное питание становится всё более и более массовым.

Что делать, чтобы собрать трёхфазный щиток более бюджетно? Собирать его на УЗО и автоматах! Но как? Каким образом? Ведь тут сразу встаёт задача группировки линий по фазам и по УЗО одновременно, которая хрен нормально совместима. Почему не совместима? А вот сейчас покажу.

Вариант 1. Заменить дифавтоматы парой «УЗО+Автомат». Его можно использовать, но собирать щиток будет неудобно, потому что не будет наглядности, которая получается с дифами или с вариантом, где УЗО и автоматы стоят отдельно.

Вариант 2. Поставить по двухполюсному УЗО на каждую фазу. Тогда на весь огромный трёхфазный щиток мы получим всего три УЗО и кучку автоматов. Схема щитка будет вот такой вот:

И тут сразу встаёт тьма тьмущая минусов конструкции:

  • Появляются нулевые шинки. Это ОЧЕНЬ плохо в трёхфазных щитах. Но не из-за того, что якобы внутри щита отвалится ноль. А из-за того, что появляется лишняя возня с этими нулями после УЗО: надо помнить, куда какой подключать, думать, как эти шинки разместить. И ещё кое-что, что будет в последнем пункте недостатков ;) *тут злобный смех*.
  • Расположение автоматов: или мы ставим их плохо для пользователя в разнобой, но зато соединяем гребёнкой и получаем красивый монтаж щита, или же мы ставим их хорошо для пользователя (а это самое важное!), но получаем плохой монтаж щита, потому что нам придётся соединять все автоматы нужной фазы шлейфом при помощи наконечников НШВИ(2).
  • Полная невозможность переключить конкретный автомат на другую фазу. Для того, чтобы какой-нибудь автомат из схемы, например «Посудомойка» переключить с фазы «L1» на фазу «L3» нам придётся выкидывать его из гребёнки или резать его шлейф. А потом дотягивать до него провод от другого УЗО. И это ещё половина возни. Потому что кроме фазы, нам надо переключить на другое УЗО ещё и ноль! А это значит, что нули надо как-то подписывать, оставлять в щите место для их маркировки. Короче, чтобы переключить автомат на другую фазу, здесь придётся вырвать и переделать монтаж щита. То есть, заказчику в комплекте надо давать обжимку WS-04A, наконечники НШВИ и НШВИ(2) и монтажный провод ПуГВ.

Если уж мы хотим получить совсем бюджетный щиток на три фазы (если у нас например всего десяток линий), то лучше поставить одно четырёхполюсное УЗО, кросс-модуль, и распределить автоматы через него. Тогда нулевая шинка будет общая, и будет возможность переключать нагрузки по фазам. Когда-то я собирал такой щиток. Вот как он выглядит (из давнего поста):

То есть, этот вариант превращается в вариант «Одно четырёхполюсное УЗО и кучка автоматов» и годится на какой-нибудь щиток сарая, гаража или подсобки. А у нас напрашивается третий вариант:

Вариант 3. Чтобы было удобнее переключать линии по фазам, разделим общие УЗО на несколько отдельных двухполюсных. То есть, логика может быть такой: посмотрим, какие линии у нас на какой фазе висят. А потом постараемся придумать для них УЗО таким образом, чтобы на это УЗО приходила одна фаза, которая нужная этим линиям, и одновременно эти линии имели хоть какой-то логический смысл вместе. После этого мы получим такую схему:

Хотите знать, какие у неё недостатки? Да ВСЕ те же, которые были в предыдущей! Появляется ещё БОЛЬШЕ сраных нулевых шинок, а смысла остаётся ещё меньше! И та же проблема с переключением линий по фазам становится веселее: мы можем или переключить одно УЗО с его автоматами целиком, или нам снова надо будет резать провода в щитке и пересобирать его.

Смотрите, как может ужасно выглядеть такой щиток (из поста «Комплект силовых щитков для коттеджа«):

Видите, СКОЛЬКО там нулевых шинок?! Если увеличить картинку, то видны шлейфы на автоматах, переделать которые почти невозможно! То есть, это мёртвый щиток: он не будет гибким и единственное, что с ним можно сделать — это только добавить новые линии от кросс-модуля.

Надо снова думать! Давайте вспомним, какие требования мы предъявляем к трёхфазному щитку:

  • Человекоориентированность. Пользоваться щитком будут живые люди. И их не должно глючить от расстановки линий вида «Розетки кухня», «Свет улица», «Розетки мансарда», «Котёл», «Свет ванная». Потому что в такой расстановке линий не поймёшь, где искать следующую: в начале списка, в конце или вообще «где-то».
  • Гибкость. Возможность переключать любую линию на любую фазу, если это потребуется. Возможность добавить в щиток новые линии (автоматы).
  • Дифзащита на все линии, где она нужна. Ибо людей защищать надо!

Если оставить логическую группировку линий, и вспомнить о том, что есть четырёхполюсные УЗО, то у нас получается интересный вариант.

Вариант 4. Четырёхполюсные УЗО и Двухполюсные автоматы.

Что мы делаем? Мы берём лучшее от всех раньше описанных вариантов: двухполюсные подключения, чтобы избавиться от нулевых шинок; УЗО для дифзащиты, потому что они дешевле дифавтоматов; кросс-модули для переключения нагрузки по разным фазам. И мы получаем вот такую вот схему щита:

Тут мы взяли двухполюсные автоматы для того, чтобы снова соединить все нули гребёнкой PS1/57N и не думать о них вовсе. Эти автоматы мы можем расставить так, как нам хочется, не думая о том, какой на какой фазе окажется. Потому что до автоматов мы поставили кросс-модули. А вот до кросс-модулей мы поставили дифзащиту в виде четырёхполюсных УЗО.

УЗО в штуках на щиток будет немного, но зато они будут защищать сразу много автоматов. Скажем, если нам надо сильно бюджетить щит коттеджа, то можно сделать УЗО на первый этаж, УЗО на второй этаж, УЗО на оборудование и УЗО на кухню и санузлы. Номинал УЗО по току мы выбираем не меньше вводного автомата или с запасом на будущее. Если я точно знаю, что вводной автомат больше 25А не поднимется (это соотвествует 15 кВт на трёх фазах), то ставлю УЗО на 25А. А если с запасом — то ставлю УЗО на 40А.

И тут искушённый человек задаст вопрос: а как же это так? Вот обычно мы стараемся увеличить количество УЗО таким образом, чтобы если одно УЗО сработает так, что его без ковыряния в линиях назад не включишь, у нас оставалось хоть что-то работающее. А тут получается, что отрубится весь первый этаж — и привет?

А вот здесь нам как раз очень-очень помогают двухполюсные автоматы! Благодаря им мы не только можем использовать кросс-модули и избавиться от нулевых шинок, но ещё и быстро восстанавливать работоспособность линий. Давайте вместе вспомним, какие варианты срабатывания УЗО у нас могут быть? УЗО может сработать при утечке с фазы на PE, или при утечке с нуля на PE. Вот если в первом случае нам достаточно снять с линии фазу (отключив однополюсный автомат), то во втором случае мы должны иметь или много УЗО (как в однофазном щитке — там мы отдаём предпочтение работоспособности линий), или ставить двухполюсные автоматы, которые отключают как раз фазу и ноль линии одновременно.

То есть, если у нас сработало одно из «больших» УЗО, алгоритм поиска проблемы будет такой:

  • Отключаем все автоматы, которые находятся под этим УЗО нафиг.
  • Взводим УЗО. Тут сразу будет понятно, что глючит. Когда все автоматы отключены, то УЗО должно включиться назад (если нет никаких глубоких проблем в щитке). А если УЗО не включается — то есть вероятность, что оно само сдохло.
  • Начинаем включать автоматы линий, которые находятся под этим УЗО. Как только мы доберёмся до проблемной линии, у нас снова отключится УЗО.
  • Отключаем автомат проблемной линии (на котором вышибло УЗО), и продожаем включать автоматы дальше.

В результате у нас все проблемные линии будут выключены, а остальное будет работать. И вот это вот оправдывает то, что мы настолько сократили все УЗО в нашем щитке. Если немного показать или научить — с такой методикой поиска проблем справится даже школьник, и это хорошо.

Ну а переключать линии по фазам мы сможем так же, как и обычно: переставляя провода по шинам кросс-модулей. Единственная сложность, когда нам надо будет перетряхивать весь щиток — это если мы захотим, чтобы конкретный автомат стоял совсем под другим УЗО.

Давайте по приколу прикинем бюджет такого щитка по ценам из ЭТМ. Положим, у нас есть 20 линий. Разобъём их на два УЗО.

  • 20 автоматов S202 C16 (2CDS252001R0164): 775 руб х 20 = 15 500 руб
  • 2 штуки УЗО F204 AC-40/0.03 (2CSF204001R1400) 3891 х 2 = 7 782 руб
  • 2 штуки кросс-модулей ИЭК YND10-4-07-100 664 х 2 = 1 328 руб

Сумма получается равна 24 610 руб. А теперь берём 20 штук дифов DS201 C16 AC30 (2CSR255040R1164): 3946 * 20 = 78 920. Разница в стоимости в три раза! То есть, если нам надо сэкономить в условиях кризиса — такой вариант абсолютно годится и имеет право на жизнь.

Какие недостатки могут быть у такого варианта?

  • Он отжирает в примерно два раза больше места в щитке, чем щиток на дифавтоматах. В некотором случае это может быть важным. Например, когда надо уложиться строго в нужный размер щита, или когда в два раза больший щит по стоимости убивает всю денежную разницу этого варианта.
  • Ну и то, что придётся чаще бегать к щитку при утечках: УЗО-то стало меньше, и защищают они сразу много линий каждое.

А вот переключение линий по фазам и добавление новых, удобство подключения к щитку и его наглядность остаются такими же, как в щитке на дифавтоматах. И сейчас я часто стал использовать такой вариант, когда придумываю кому-нибудь щитки. Например, как раз такой щиток я ставил на дачу родственникам.

Часть 2. Собираем трёхфазный щит по схеме.

Сейчас я расскажу про такой щиток подробнее. Попросил меня один заказчик быстро собрать ему трёхфазный щиток вместо однофазного, потому что у них в районе всех переводят на трёхфазное питание. Я посидел, посмотрел на старые уже проложенные линии и придумал ему щиток по такой схеме.

Схемы щитка не будет, потому что она до ужасти стандартная и нарисована выше для любого такого щитка: на вводе стоит рубильник для того, чтобы было удобно заводить вводной кабель и быстренько отключать весь щиток целиком. После этого питание проходит через вольтметро-амперметры Меандр ВАР-М01, потом идёт через три штуки УЗМ51-м для защиты от отгорания магистрального нуля или кривого вводного напряжения. Дальше это питание подаётся на два УЗО, а с них через кросс-модули — на автоматы.

И так забавно получилось, что в качестве корпуса щитка снова был выбран Mistral IP65, как и в щитке для однофазного мастер-класса. Мы расставляем все компоненты в щиток (тут он на 72 модуля, и ширина DIN-рейки 18 модулей):

Дальше мы отрезаем и расставляем гребёнки на УЗО и автоматы. Как раз кстати для нас и для такой схемы щитка выпускается гребёнка ABB PS4/12 (артикул 2CDL240101R1012). Эта гребёнка позволяет соединить вместе три штуки четырёхполюсных УЗО, потому что её схема такая: L1-L2-L3-N-L1-L2… Эта гребёнка выглядит вот так:

Я отпилил её на ширину двух УЗОшек и прикрутил к ним:

А ещё её удобство в том, что если забыть про Мистрали, то она точно подходит под три УЗО, стоящие на одной DIN-рейке на 12 модулей, которая и является стандартом для щитов ABB.

Нули снова соединяем гребёнкой PS1/57N, выкусывая зубья через один:

Вот так вот у нас получилось:

После этого соединяем все компоненты в щите между собой. Как и в прошлом мастер-классе, мы делаем всё так, чтобы не загромождать рабочее место и использовать в похожих операциях только небольшое количество инструмента. Я решил сначала подключить ноль. Он идёт из рубильника на питание ВАР-М01, на питание УЗМок и сразу на питание УЗО.

Когда я сделал все соединения, то у меня получился вот такой вот ктулху:

Тут виден плюс сборки щитков проводом с многопроволочной жилой (ПуГВ). Там можно подсунуть под наконечник сразу несколько сечений и опрессовать его вместе, чего не сделаешь с моножилой.

Закручиваем эту ктулху в щиток:

А после этого разводим фазы. У меня получилась сама собой классная компоновка щитка таким образом, что ВАРы вставли под вводной рубильник. Поэтому фаза с него идёт сразу через ВАР, а потом за DIN-рейками поднимается на УЗМку. ВАРы мы подключаем до УЗМок, потому что они должны показывать нам напряжение сети даже если УЗМ отключится — как раз по ВАРам мы будем определять, что там с УЗМ случилось и не пора ли скорее отключать вводной рубильник.

Дальше после выходов УЗО мы подаём питание на соотвествующие им кросс-модули. И на этом первая часть сборки щита завершена. Можно подать питание и проверить работу УЗО по кнопке «Тест».

После этого начинаем подключать линии к автоматам от кросс-модулей. Сначала подадим ноль на нужные автоматы.

А потом так же, как в и щитке на дифавтоматах, подключим фазы от автоматов к кросс-модулю.

У нас получится такая вот картинка:

Сравните её с картинкой от щитка на дифавтоматах. Есть ли разница для подключения конечным пользователем? Нет! =)

Ну и крупным планом фотка кросс-модуля. Он заполнен частично и выбран с запасом. Если надо что-то переключить на другую фазу — достаточно открутить провод из одной шинки и воткнуть в другую.

Вот что у меня получилось в итоге. На DIN-рейках есть резерв места для новых линий, если они понадобятся. Внутри щитка всё достаточно свободно и наглядно.

А так как Mistral IP65 на 72 модуля состоит из двух дверей, то как-то само собой получилось так, что одна дверь отвечает за ввод, а другая (которая на фото ниже не показана) — за групповые автоматы.

Этот щиток уже сдан заказчику и наверное на каких-нибудь выходных им и будет подключен. Пока у него ещё старый вводной кабель, и в щиток придёт одна фаза. Но если сделать на вводном рубильнике перемычку, то новый щиток можно сразу устанавливать и подключать. А потом, когда вводной кабель будет переделан — щиток будет переключен на три фазы.

Часть 3. Небольшие советы по трём фазам.

И вдогонку дам ещё парочку советов на случай трёхфазного ввода и разработки щитков на три фазы.

Во-первых, если ваше помещение — не беседка, куда надо провести только свет, ведите в каждое помещение всегда три фазы целиком. Не делайте убогих решений, когда отводят одну фазу на щит гаража, другую — на щит сарая, третью — на щит бани. В каждое из этих помещений ведите три фазы для того, чтобы можно было легко считать и переключать в пределах вашего домохозяйства три фазы в любом месте.

То есть, любой щиток сарая или прочего помещения мы начинаем с четырёхполюсного рубильника, куда подаём все три фазы. А вот уже потом, если там действительно нужно сделать две линии (на свет и розетки) — мы ставим двухполюсное УЗО и пару автоматов на одну из фаз.

Во-вторых, когда считаете распределение нагрузок по фазам, не надо выдумывать никаких сложностей! Берёте максимальную нагрузку для каждой линии и распределяете эти линии по фазам так, чтобы общая сумма киловатт по каждой была примерно равна. Даже если получилось по 30 кВт на каждой линии, а вам выделено всего 15. Вот например, так:

Позже, если вы вдруг ошибётесь, то вам достаточно будет уже потом, в собранном щитке, переключить часть линий на кросс-модуле. Я приведу выдержку из своей инструкции к щиткам:

В данном щитке все основные виды питания (например неотключаемое, основное или неприоритетное) выведены на отдельные кросс-модули (блоки шин L1-L2-L3-N). Это облегчает разводку щита и позволяет легко добавлять новые линии или изменять распределение нагрузки по фазам.

При проектировании щитка вся нагрузка равномерно распределяется по фазам. Если же при использовании щитка оказалось, что во время включения каких-то нагрузок выбивает вводной автомат из-за перегрузки, то понадобится поменять распределение по фазам некоторых линий.

Для изменения распределения по фазам понадобится всего лишь отвёртка. Надо открыть кросс-модуль, найти провод от линии питания нужного автомата/дифавтомата, открутить его из одной фазной шинки и закрутить в любое свободное отверстие другой фазной шинки. Обычно на проводе находится трубочка с маркировкой вида «Lxx», где «xx» — это номер автомата/дифавтомата, который питается от этого провода.

Как понять, что, с какой и на какую фазу переставлять? Для этого требуется немного внимательности и логического мышления. Нужно заметить и запомнить, какие нагрузки были включены м тот момент, когда вводной автомат отключился. После этого надо обратиться к документации на щиток и посмотреть, на каких фазах они были. Если в щитке были установлены измерительные приборы — то по ним сразу будет видно, на какой фазе была самая большая нагрузка.

Предположим, для примера, что на фазе L1 у нас находятся розетки прихожей, духовка и водонагреватель. В обычном варианте всё работало нормально, но вдруг в прихожую стали включать мощный обогреватель. На практике это может выглядеть так: чего-то жарим, работает обогреватель, включился водогрей — и всё потухло. Включаем вводной автомат назад, повторяем эксперимент, наблюдаем. Вспоминаем, что все описанные нагрузки находятся на фазе L1.

Значит решением будет перенести одну из этих нагрузок на какую-нибудь другую фазу. Какую именно — можно выбрать или логикой вида «водонагреватель используется не так часто, посадим его на фазу, где сидят розетки ванной» или эмпирическим путём.

ВНИМАНИЕ! Не следует переставлять все нагрузки подряд и бездумно. Тем самым вы можете ещё больше нарушить их распределение, которое потом подсчитать и восстановить будет сложно.

На этом — всё! Собирайте бюджетные трёхфазные щитки правильно. Помните, что ими будут пользоваться другие люди, и что ваш щиток должен быть любой ценой удобен и понятен для именно этих людей, а не для каких-то сферических абстракных сущностей!

cs-cs.net


Смотрите также

© "Совершенные окна", 2019 г.
Перепечатка текстов, а так же полное или частичное воспроизведение других материалов сайта возможно только с согласия их авторов.

телефон: (495) 755-10-94
(многоканальный)