Скидка ­ 50 %

Типы солнечных панелей


Виды солнечных батарей

Содержание:

В настоящее время большое внимание уделяется технологическим разработкам в области альтернативных источников электроэнергии. Среди них все более популярными становятся системы, использующие энергию солнца для генерации электрического тока. Они включают в себя набор компонентов, в том числе и различные виды солнечных батарей, отличающихся физическими свойствами и техническими характеристиками.

Данные устройства постепенно внедряются для использования в быту и на производстве и зарекомендовали себя как достаточно эффективные и экологически чистые системы.

Основные виды и классификация солнечных батарей

Все солнечные батареи, известные в настоящее время, можно классифицировать следующим образом:

  • Устройства малой мощности, предназначенные для питания и зарядки небольших приборов – смартфонов, планшетов и т.д. Их можно применять вне стационарных сетей.
  • Универсальные батареи. Обеспечивают питание электронных устройств при отсутствии стационарной сети.
  • Солнечная батарея (панель). Состоят из набора фотоэлементов, закрепленных на подложке. Получили наиболее широкое распространение и в свою очередь разделяются на отдельные категории.

Классификация и типы солнечных батарей (модулей):

  • Фотоэлектрические преобразователи. Конструктивно являются полупроводниковыми устройствами для преобразования солнечной энергии напрямую в электрическую. Несколько элементов, соединенных между собой, становятся солнечной батареей, которая выглядит как панель. Принцип действия заключается в фотоэлектрическом эффекте, когда в неоднородных полупроводниковых структурах под действием солнечного света появляется электрический ток. Электрофизические характеристики полупроводников могут отличаться, что влияет и на эффективность самого преобразователя.
  • Гелиоэлектростанции. Представляют собой солнечные установки, работающие от концентрированной энергии солнца, приводящей в движение паровые, газотурбинные и другие агрегаты. Принцип работы основан на использовании обычных линз или вогнутых зеркал, собирающих и концентрирующих солнечные лучи. В фокусе размещается нагревательный элемент, температура которого постепенно увеличивается. Зеркала считаются более эффективными, поскольку дают возможность получить более мощное излучение.
  • Солнечные коллекторы. Относятся к низкотемпературным нагревательным установкам, обеспечивающим горячее водоснабжение в автономном режиме. Широко применяются и в других сферах. Мощность каждого устройства полностью зависит от его полезной площади. Они способны нагревать жидкости до температур в диапазоне 100-2000С.

Дополнительная классификация

Существует еще целый ряд признаков, позволяющих классифицировать солнечные батареи. Среди них большое значение имеет расположение атомов кремния в кристаллическом элементе.

В связи с этим, можно выделить следующие типы солнечных батарей:

  • Монокристаллические. Для их изготовления применяется кремний высокой чистоты, получаемый промышленным способом. КПД таких батарей составляет 14-17%.
  • Поликристаллические. Этот вид солнечных батарей изготавливается из кремниевого расплава, медленно охлаждаемого до нужного состояния. Данный способ значительно дешевле, а полученный кремний приобретает ярко синий цвет. КПД таких элементов ниже, в пределах 10-12%.
  • Панели на основе аморфного кремния. Они относятся к категории тонкопленочных, поскольку кремний наносится на основу как очень тонкая пленка и покрывается защитным материалом. Данный метод изготовления считается наиболее дешевым и простым, но эффективность таких изделий ниже, чем в любом кристаллическом варианте. Компоненты панелей постепенно теряют свои качества. КПД находится на уровне 5-6%.

Основные виды солнечных панелей следует рассмотреть более подробно. Зная их параметры и технические характеристики, гораздо легче сделать правильный выбор.

Солнечные панели на основе кремния

Наибольшей популярностью пользуются элементы, основой которых является моно-кристаллический кремний. Производство осуществляется методом литья, а новые технологии дают возможность получать совершенно чистые кристаллы кремния. Твердение расплава происходит во взаимодействии с кристаллической затравкой.

В процессе охлаждения и застывания образуются цилиндрические монокристаллы, диаметр которых составляет от 13 до 20 см, а длина – 2 м. Стержни разрезаются на отдельные части. Толщина каждого кружка выдерживается в пределах 0,2-0,4 мм. Из этих кружочков образуются ячейки. Для одной панели их оптимальное количество составляет 36 единиц.

Наиболее качественные кристаллы позволяют увеличить КПД до 19%. В таких монокристаллах атомы сориентированы таким образом, что подвижность электронов заметно возрастает. Весь кремний пронизан металлической сеткой, выполняющей функцию электродов. Для установки панели предусмотрена алюминиевая рамка, после чего модуль закрывается противоударным защитным стеклом. Полученная поверхность бывает черного или темно синего цвета.

Монокристаллические кремниевые солнечные батареи отличаются надежностью и долговечностью. Расчетный срок эксплуатации составляет 50 лет. Отсутствие движущихся деталей существенно упрощает монтаж. Они используются в районах с большим количеством солнечных дней, где обычное энергоснабжение работает с перебоями. Высокая эффективность панелей определяется их высокой стоимостью. В большинстве случаев их использование экономически выгодно и целесообразно.

В более дешевых батареях используется мультикристаллический кремний, в состав которого входят различные монокристаллические решетки, собранные в случайном порядке. Срок эксплуатации таких устройств планируется не более 25 лет, а их КПД и стоимость гораздо ниже, чем у классических панелей.

Существует еще один вариант солнечных батарей, в которых использовались элементы поликристаллического кремния. Он также отличается низкой стоимостью, а его кристаллы находятся в агрегатном состоянии, обладают различной формой и ориентацией. В отличие от монокристаллов, они окрашены в собственный ярко синий цвет. Производство таких компонентов постоянно совершенствуется и в настоящее время их параметры лишь незначительно отличаются от лидирующих конструкций.

Производство поликристаллов осуществляется путем медленного охлаждения кремниевой субстанции. Процесс изготовления быстрый и дешевый, однако КПД таких панелей получается достаточно низким. Причина заключается в образовании внутренних поликристаллов, снижающих эффективность батарей.

Тонкопленочные технологии для солнечных панелей

Изобретение технологии с использованием тонкой пленки дало возможность постепенно вытеснить кристаллические солнечные панели, приближаясь к ним по своим техническим характеристикам. Основные преимущества таких изделий заключаются в их невысокой себестоимости, которая становится определяющим фактором в конкурентной борьбе. Модули нового типа отличаются гибкостью, легкостью и эластичностью, что дает возможность устанавливать их практически на любые поверхности.

Основными компонентами пленочных систем являются алюминий, аморфный кремний, теллурид кадмия и другие виды полупроводников, из которых состоит вся конструкция. Все элементы закрепляются на полимерной пленке и составляют единое целое. Количество вырабатываемой электроэнергии напрямую зависит от площади изделия.

В самом начале в тонкопленочных элементах применялся аморфный кремний, наносимый на подложку. Такая конструкция, где используются эти компоненты служила совсем недолго, а КПД составлял всего лишь 4-5%. С улучшением технологии эти показатели возросли, в том числе и КПД, который достиг 8%. Тонкопленочные солнечные батареи третьего поколения увеличили этот показатель до 12% и стали вполне конкурентоспособными по отношению к кремниевым панелям. Таких показателей удалось достичь за счет селенида меди-индия и теллурида кадмия, нашедших свое применение еще в первых портативных зарядных устройствах.

Теллурид кадмия считается более перспективным для дальнейшего использования в солнечных батареях с тонкой пленкой. Некоторое время шли споры о его токсичности, но исследования показали, что вредные выбросы минимальны и не представляют опасности для окружающих. При этом, его КПД достиг 11%, а цена за 1 Вт на 30% ниже, по сравнению с кремниевыми аналогами.

Селенид меди-индия считается еще более эффективным. В настоящее время индий в большинстве случаев заменяется галлием, поскольку он практически весь используется в других производствах. Однако, даже в этом случае пленочные солнечные батареи нового поколения выдают КПД, равный 20%.

Конструкция тонкопленочных панелей

Характерной особенностью таких конструкций является их высокая производительность даже при воздействии рассеянного света. В течение года суммарная мощность этих устройств на 15% превышает кремниевые аналоги. В этом заключаются их явные преимущества.

На определенном этапе, в зависимости от площади, тонкопленочные солнечные батареи начинают преобладать над другими типами модулей. При пасмурной погоде они будут работать значительно эффективнее, так же как и при высокой температуре в жаркую погоду, как и планировал изобретатель. Благодаря физическим свойствам эти изделия часто применяются в декоративной отделке фасадов зданий и в других дизайнерских решениях. Специалисты прогнозируют, что это солнечные батареи будущего.

Важным конструктивным решением является нанесение тонкой пленки на цилиндрические поверхности. В качестве такого цилиндра используется стеклянная трубка, которая после нанесения фотоэлемента помещается внутрь другой трубки. Вторая трубка имеет больший диаметр и к ней подведены электрические контакты.

Благодаря цилиндрическому исполнению, пленочные солнечные батареи поглощают большее количество света, а 40 деталей свободно размещаются на площади 2 м2. Они устойчивы к сильным порывам ветра и могут свободно устанавливаться на крышах.

В настоящее время плёночные конструкции оснащаются различными типами каскадных элементов, обладающих многослойной структурой. Вместо одного, в них имеется несколько р-п переходов, что в значительной степени увеличивает эффективность таких модулей. В результате, электрическая энергия, генерируемая панелями, снижает свою себестоимость в два раза относительно кремниевых элементов. На всей площади плёнки с тремя переходами КПД составляет 31%, а при пяти переходах это значение может достичь 43%.

Благодаря постоянному развитию технологий, тонкопленочные солнечные батареи в ближайшее время станут доступными для большинства населения. Они будут не только дешевыми, но и эффективными.

electric-220.ru

Виды и типы солнечных батарей

Все существующие на сегодняшний день виды солнечных батарей можно условно подразделить на следующие классы:

  • батарея маломощная – предназначается для зарядки таких гаджетов, как мобильный телефон и КПК, а также негабаритной техники;
  • батарея универсальная – предназначена для питания электроники «в полевых условиях», обычно пользуется популярностью у туристов;
  • панель солнечных элементов – набор фотопластин на подложке, является основным элементом солнечных устройств широкого спектра.

Помимо этого, классификация солнечных батарей выделяет 3 основных типа: ФЭП – фотоэлектрические преобразователи, ГЕЭС – гелиоэлектростанции и СК — солнечные коллекторы.

Фотоэлектрический преобразователь в лаборатории

1. Фотоэлектрический преобразователь представляет собой полупроводниковое устройство по преобразованию солнечной энергии непосредственно в электричество. Несколько соединенных между собой преобразователей образуют солнечную батарею.

Принцип работы ФЭП основан на фотовольтаическом эффекте, т.е. возникновении электрического тока при воздействии солнечного излучения на неоднородную полупроводниковую структуру. Неоднородность структуры достигается несколькими путями:

  • первый способ – легирование полупроводника различными примесями, вследствие чего образуются несколько p-n переходов;
  • второй способ – соединение разных полупроводников, которые имеют разную ширину запрещенной зоны, т.е. энергию отрыва из атома электрона. При этом создаются гетеропереходы;
  • третий способ – изменения химического состава полупроводника, что приводит к созданию градиента ширины запрещенной зоны, варизонных структур иначе.

Также возможны комбинации перечисленных выше способов, что позволяет добиться большей эффективности преобразователя, которая зависит от электрофизических характеристик полупроводниковой структуры и оптических свойств преобразователя. Важным фактором, определяющим оптические свойства, является фотопроводимость, которая обуславливается явлением внутреннего фотоэффекта, возникающего при облучении полупроводника солнечным светом. Руководствуясь этими физическими свойствами на заводах изготавливают солнечные батареи, которые используются во многих отраслях промышленности.

Гелиоэлектростанция Gemosolar

2. Гелиоэлектростанция – это солнечная установка, которая использует концентрированную солнечную энергию для приведения в действие различных машин: паровых, газотурбинных, термоэлектрических и др. Практическое применение гелиоэлектростанций достаточно разнообразно: выработка электроэнергии, отопление, опреснение морской воды.

Процесс концентрации солнечной энергии осуществляется в специальных концентраторах, в которых используется принцип обычной линзы. В промышленности вместо линз используют вогнутое зеркало, т.к. линзы достаточно тяжелы и имеют высокую стоимость. Такие зеркала являются основным элементом гелиоконцентратора, который собирает параллельные солнечные лучи. Как только в фокусе зеркала размещается труба с водой, она начинает нагреваться. Зеркало выполняют либо из обычного стекла, либо из полированного алюминия.

Применение зеркал, по сравнению с линзами, световодами и подобными устройствами, является наиболее эффективным, поскольку позволяет получить наиболее высокий уровень мощности солнечного излучения. Наиболее эффективно применение гелиоэлектростанций в тропических широтах. Средняя полоса также позволяет применять этот принцип преобразования энергии.

Солнечные коллекторы автосалона Гема Моторс

3. Солнечный коллектор представляет собой низкотемпературную нагревательную установку, которая используется для автономного горячего водоснабжения как жилых, так и производственных помещений. Солнечный коллектор – наиболее используемый тип преобразователей солнечной энергии. Они выполняют широкий спектр работ по преобразованию энергии. При помощи солнечных коллекторов добывают из колодцев воду, подогревают пищу, высушивают фрукты и овощи, замораживают продукты и т.п.

Главное преимущество солнечного коллектора – высокое значение КПД. Мощность коллектора определяется его полезной площадью. Солнечные коллекторы могут нагреть воду до температуры 100-200 градусов (в зависимости от вида солнечных батарей).

Все солнечные коллекторы можно разделить на 3 вида – плоские, вакуумные и коллекторы-концентраторы:

  • плоский коллектор представляет собой конструкцию из элемента-абсорбера, который поглощает солнечное излучение; прозрачного покрытия (обычно используется закаленное стекло с пониженным содержанием металла) и термоизолирующего слоя. Плоский солнечный коллектор способен нагревать воду до 190-200 градусов.

    Особое оптическое покрытие плоского коллектора в инфракрасном свете не излучает тепло, что значительно повышает его эффективность. В качестве абсорбера широко применяется листовая медь, отличающаяся хорошей теплопроводностью;

  • вакуумный коллектор имеет многослойное стеклянное покрытие. Тепловая труба вакуумного коллектора устроена, как термос. Это позволяет сохранять до 95% тепловой энергии. В нижней части трубки коллектора располагается жидкость, которая при нагревании превращается в пар. Поднимаясь в конденсатор, расположенный в верхней части трубки, пар конденсируется и передает в коллектор тепло (по законам физики).

    При условиях слабой освещенности этот вид коллекторов обладает большим КПД, чем плоские коллекторы;

  • коллектор-концентратор для концентрации солнечной энергии использует зеркальную поверхность, которая фокусирует свет с большой поверхности на меньшей поверхности абсорбера. Благодаря этому достигается достаточно высокая температура. В некоторых случаях излучение может концентрироваться в фокусной точке, в других случаях — вдоль тонкой фокальной линии. Для работы с концентраторами используются специальные следящие устройства, которые поворачивают его солнечному свету.

    Концентраторы позволяют нагревать до значительно более высоких температур, чем предыдущие виды, однако могут концентрировать лишь прямое излучение. В туманную и облачную погоду работа концентраторов затруднена. Концентраторы наиболее эффективны в пустынных регионах и близко к экватору и используются в основном в промышленности, вследствие их дороговизны.

Дополнительно все солнечные батареи классифицируются по организации атомов кремния в кристалле солнечного элемента: монокристаллические, поликристаллические и аморфные.

  1. Монокристаллические батареи снабжены крайне чистым кремнием, который достаточно хорошо освоен в производстве полупроводников. Монокристалл растет на семени, вытягивающемся из кремниевого расплава. Полученные таким путем стержни разрезаются на части толщиной 0,2-0,4 мм, образуя ячейки. Оптимальное количество используемых ячеек – 36 штук.

    Батареи, полученные из монокристаллов кремния, пользуются наибольшей популярностью. КПД монокристаллических батарей – 14-17%.

  2. Поликристаллические солнечные батареи изготавливаются из кремния, который получается путем медленного охлаждения кремниевого расплава. Такой способ менее энергоемкий и более дешевый. Кремний, получаемый для поликристаллических солнечных батарей, ярко синего цвета.

    КПД поликристаллических батарей – 10-12%.

  3. Батареи из аморфного кремния получаются путем «техники испарительной фазы». Тонкая пленка кремния при этом методе просто осаждается на несущий материал и защищается покрытием, поэтому такие батареи также называются тонкопленочными.

    Этот метод изготовления самый простой и дешевый, однако эффективность батареи значительно ниже, чем в кристаллических батареях, к тому же элементы из аморфного кремния подвержены процессу деградации. Работают тонкопленочные батареи при рассеянном излучении, устанавливаются на стены зданий. КПД батарей из аморфного кремния – 5-6%.

О структуре солнечной батареи в готовом исполнении вы сможете прочесть в другой статье. Последние разработки швейцарских ученых позволили получить новый дизайн тонкопленочных солнечных элементов, которому дали название «швейцарский сыр». Разработчики придумали 3D-форму, при которой поглощающий слой сохраняется толстым, но расстояние между электродами при этом достигается минимальное. В разработке применялась технология плазменно-химического осаждения, которая обычно используется для производства ЖК-экранов. Дополнительно были внедрены подложки из массива наностолбиков оксида цинка. Полученная форма позволяет копировать форму поликристаллов.

batsol.ru

Солнечные батареи и из чего они сделаны

С того момента, когда в далеком 1839 году французский ученый Александр Беккерель случайно наткнулся на непонятное явление, связанное с воздействием света на некоторые материалы, произошло много событий. И наткнувшись на старую публикацию в физическом журнале, немецкий физик Генрих Герц уже не случайно проводит опыты, облучая ультрафиолетовым светом цинковые разрядники резонатора.

Его исследования привели к открытию того, что сейчас называется «внешний фотоэффект». Далее эстафету принял русский ученый Александр Столетов, который, исследуя это явление, сделал несколько важнейших открытий и вывел первый закон фотоэффекта. В начале ХХ века Альберт Эйнштейн, взяв за основу гипотезу Макса Планка, дал принципиальное объяснение фотоэффекта.

С тех пор многие выдающиеся ученые занимались изучением фотоэффекта, надеясь найти этому явлению практическое применение. И решение было найдено. Вначале итальянец Джакомо Луджи Чамичан создает прототип, а уже в 1954 году американская компания Bell Laboratories объявила о том, что ее специалистами создана первая в мире солнечная батарея, вырабатывающая электрический ток под воздействием солнечного света. Это и был фотоэффект в действии.

Так что же это такое, из чего сделаны солнечные батареи, как они работают.

Как правило, когда говорят «солнечная батарея», подразумевают, что это один или несколько фотопреобразователей, которые, будучи облучены солнечным светом, преобразовывают его в электричество. Главный элемент преобразования солнечного излучения в электричество – это, конечно же, материал, который, будучи освещенным, преобразовывает поток света в электроэнергию. Материал этот – полупроводник.

В электротехнике, электронике используются, как правило, два полупроводника – германий (Ge) и кремний (Si). В фотовольтаике в большинстве своем используется кремний как наиболее распространенный и дешевый. Германий – редкий элемент, дорогой, поэтому он используется в исключительных случаях.

Структура солнечной батареи

Для изготовления солнечных фотопреобразователей используются два вида кремния – монокристаллический и поликристаллический. Как уже явствует из характеристик, монокристаллические фотопреобразователи изготавливаются из кристаллов кремния, выращенных искусственно.

Эти кристаллы затем по специальной технологии нарезаются на тонкие пластины, из которых изготавливаются сами фотопреобразователи. Нарезанные пластины тщательнейшим образом проверяются на точность нарезки, толщину самой пластины, отсутствие физических дефектов.

Этот контроль необходим для последующей сборки самого солнечного модуля, так как малейшее отклонение параметров хотя бы одного элемента влечет за собой значительные потери мощности всего солнечного модуля. Пластины монокристаллического кремния окрашены в равномерный темно-серый цвет – это естественный цвет кристаллов кремния.

Кремниевые фотоэлементы Поликристаллический (слева), монокристаллический (справа)

В отличие от монокристаллов, поликристаллические фотопреобразователи изготавливаются методом литья. Такие фотопреобразователи более просты и доступны. Если солнечные элементы из монокристаллического кремния представляют собой восьмиугольники строго выдержанного размера (допуск ± несколько микрометров), то поликристаллические элементы – как правило, прямоугольной формы с голубовато-синим отливом. К кремнию для получения особых свойств добавляют определенное количество мышьяка (As) и бора (B).

Преобразование света в электричество

Это и есть практическое применение фотоэффекта – прямое преобразование энергии света в энергию электрическую. Собственно, реакция материала на облучение светом зависит от кристаллической структуры полупроводника. Структурно каждый фотоэлемент состоит из двух слоев. Один слой в кристаллической решетке имеет переизбыток электронов и называется областью электронов.

Второй слой, соответственно испытывает недостаток электронов и называется дырочной областью (в электронике места, в которых должны быть электроны, но они там отсутствуют, называются дырками). Граница между этими слоями называется электронно-дырочный p-n переход. В зависимости от типа полупроводника свойства перехода могут быть другими. Тогда он называется дырочно-электронный n-p переход.

Принцип работы фотоэлемента

Под воздействием света эти два слоя начинают взаимодействовать, электроны из одного слоя начинают замещать дырки в другом слое. При этом возникает электродвижущая сила, превращая, по сути, эти два слоя в электроды обычной батарейки.

Теперь, чтобы использовать эту электрическую энергию, остается только подпаять к поверхности каждого слоя тонкие проводники и подключить нагрузку. Следует отметить, что этот процесс не вызывает никаких химических реакций в полупроводнике, а, следовательно, солнечная батарея, набранная из таких фотопреобразователей, может служить очень долго.

Во многих странах, в исследовательских центрах проводятся работы, которые призваны решить проблему повышения эффективности солнечных батарей. Пробуются комбинации различных материалов для использования их в качестве фотоэлементов. В тонкослойные кремниевые элементы добавляют в различных пропорциях галлий, мышьяк, медь, кадмий. Причем эти присадки могут быть как в чистом виде, так и в комбинациях материалов, например, арсенид галлия (GaAs).

Кроме того, на эффективность солнечных батарей большое влияние оказывает если не совпадение, то максимальная схожесть как физических (размеры), так и электрических (вольт-амперные характеристики) элементов, входящих в один солнечный модуль. В процессе эксплуатации солнечных батарей может возникнуть ситуация, при которой один или несколько фотопреобразователей могут быть затенены.

Таким образом, они на какой-то промежуток времени исключаются из рабочей конфигурации модуля. Но, будучи включенными в общую цепь, они могут разогреваться и, как следствие, выйти из строя. Отвод тепла от фотопреобразователей, постоянно облучаемых солнцем, также является достаточно серьезной проблемой, над решением которой работают многие ученые.

Разновидности солнечных батарей

Существуют несколько наиболее широко распространенных типов солнечных батарей. В первую очередь это, конечно же, солнечные панели, собранные на базе кремниевых фотопреобразователей. Наиболее высокая эффективность у модулей, изготовленных на базе монокристаллического кремния.

Монокристаллический модуль

Коэффициент полезного действия таких модулей по последним данным в некоторых случаях может достигать 23%. В среднем же достигается значение эффективности, равное 18%. Более дешевые панели собраны на базе поликристаллического кремния.

Эффективность таких фотопреобразователей ниже и средний показатель ее не превышает 16%. Однако за счет того, что поликристаллические элементы имеют прямоугольную форму, они более полно заполняют корпус модуля. Поэтому значения мощностей, вырабатываемых модулями на базе монокристаллического и поликристаллического кремния, будут отличаться друг от друга на весьма незначительную величину.

Поликристаллический модуль

Наиболее дешевые гелиевые батареи выполнены на базе аморфного кремния. Эти модули имеют наименьшую эффективность – порядка 8%, но и стоимость производимого электричества у этих устройств также самая низкая.

Модуль на базе аморфного кремния

Следует также отметить гелиевые панели на базе теллурида кадмия (CdTe), выполненные по тонкопленочной технологии. Пленка толщиной в несколько сотен микрометров из этого полупроводника наносится на панель. Производство этих панелей является наименее вредоносным по сравнению с производством панелей других видов. Эффективность этих батарей достигает 12%.

Модуль на базе теллурида кадмия

В последнее время получают распространение гелиевые модули на основе полупроводникового соединения, в состав которого входят индий, галлий, медь и селен (CIGS). Эти модули, как и модули из теллурида кадмия, изготавливаются по тонкопленочной технологии. Их эффективность достигает 15%.

Модуль на базе CIGS

Разумеется, потребителю вовсе не обязательно знать, как устроена и работает его домашняя солнечная электростанция. Ведь никого не интересует, как устроен, скажем, телевизор. Мы просто смотрим передачи. Но, покупая телевизор, мы уже знаем его характеристики, знаем фирму, которая его выпускает, слышали отзывы о нем.

А вот, чтобы выбрать себе оборудование для домашней электростанции, нужно иметь хотя бы приблизительное представление о том, что именно вы собираетесь приобрести и как это будет работать. И нет сомнений в том, что элементарные знания об устройстве тех или иных элементов помогут вам сделать правильный выбор.

solarb.ru

Характеристики солнечных батарей

Эксплуатационные характеристики солнечных панелей

Для изготовления фотоэлектрических элементов солнечных батарей используют кремний с минимальным количеством примесей менее 0,01%. Качество фотоэлементов зависит от количества примесей и цена тоже.

Существует три типа фотоэлемента — это монокристаллические, поликристаллические и тонкопленочные. Последние находятся еще на стадии разработки, поэтому их рассматривать не будем. Остановимся на сравнение характеристик монокристаллических и поликристаллических фотоэлементов.

Сравнение типов фотоэлементов

Фотопанели размещаются на открытом пространстве, поэтому на их работу будут влиять эти параметры фотопанелей;

— Температурный коэффициент мощности. Под палящим солнцем, фотоэлементы нагреваются, и теряется часть мощности солнечных батарей. В очень жаркие дни доля потери мощности составляет 25%. В случае монокристаллических и поликристаллических фотопанелей, температурный коэффициент мощности достигает -0,45%, то есть произойдет снижение мощности на -0,45%, на каждый градус прироста температуры. На температурный коэффициент мощности сильно влияет качество фотопреобразователей;

— Степень деградации LID. Деградация монокристаллов панелей происходит быстрее, чем поликристаллов. Год работы снижает мощность монокристаллических батарей до 3%, а поликристаллических до 2%. Такое уменьшение мощности наблюдается в первый год работы гелиопанелей, в дальнейшем эта деградация для монокристаллов будет 0,71%, для панелей из поликристаллов 0,67%.

Деградация зависит от качества фотоэлементов. Для панелей сомнительного качества деградация может достичь в первый год эксплуатации 20%. Поэтому панели важно выбирать не по низкой стоимости, а по производителю и качеству исполнения;

— Фотоэлектрическая чувствительность. Поликристаллические фотоэлементы не так чувствительны к снижению освещения, по сравнению с монокристаллами, но разница в чувствительности небольшая и не является критерием выбора по этому параметру;

— Эффективность панелей. Для выработки одинаковой мощности для поликристаллических панелей необходимо больше площади, т. е. эффективность поликристаллических гелиопанелей меньше монокристалических. Срок службы монокристаллов выше.

Качество солнечных панелей

По качеству исполнения фотоэлектрические элементы можно разделить на четыре категории качества.

Первая категория — Grad A. Это солнечные батареи самого высокого качества — без микротрещин, отсутствуют сколы. По внешнему состоянию эти фотоэлементы полностью одинаковы по цвету, структуре. Эта категория имеет самую малую деградацию и высокое КПД.

Вторая категория — Grad B. Эти фотопреобразователи практически не отличаются от фотоэлементов первой категории, но имеют небольшие изменения в цвете. Но у них большая деградация и меньший срок эксплуатации.

Третья категории — Grad С. Отличие от предыдущей категории — это наличие сколов и трещин, неоднородный окрас, но низкая стоимость. Для энергоснабжения частного дома такие фотопанели не следует применять из-за низкого КПД, высокой деградации и небольшого срока эксплуатации.

Четвертая категория — Grad D имеет самое низкое качество исполнения. Структура этих панелей неоднородная с видимыми дефектами. Небольшой размер фотоэлементов нуждается в дополнительной пайке, что еще ухудшает параметры. Такие элементы имеют небольшую надежность. Их устанавливать не рекомендуется даже при небольшой стоимости.

Пленка EVA. Предназначена для ламинации панелей с солнечной стороны. Она хорошо герметизирует фотоэлементы, снижает деградацию, защищает от механических повреждений, прозрачна. Срок службы этой пленки также зависит от качества исполнения и меняется от 5 до 15 лет.

Недорогая пленка со временем желтеет, теряет прозрачность, отслаивается и имеет срок эксплуатации 3-5 лет. Визуально качественную пленку отличить невозможно, это можно определить только через несколько лет ее работы.

ПЭТ пленка. Эта пленка изолирует тыльную сторону фотопанелей от влаги, пыли и механических повреждений. Качество пленки также можно определить через несколько лет по внешнему состоянию. Цвет становится желтее, появляются трещины.

Технические характеристики солнечной панели

Посмотреть их можно в инструкции на изделие. К техническим характеристикам гелиопанелей относится;

Пример характеристики солнечной панели

— Мощность солнечных панелей и размеры. Чем больше мощность, тем меньше стоимость на ватт. Для большой мощности выгоднее приобретать большие панели;

— Допустимые пределы отклонения по мощности или толеранс. Отклонение может быть положительным и отрицательным. Покажем на примере, толеранс 0 + 4 ватта;

— КПД солнечной панели. Конечно же, лучше приобретать панели с высоким КПД;

— Температурный коэффициент — это влияние температуры на такие параметры как мощность, напряжение и ток. Температурный коэффициент должен быть минимальным;

— Срок службы солнечных панелей. Отдельные производители дают 20 лет эксплуатации панелям с гарантией 5 лет. Правильная установка солнечных батарей может резко поднять эффективность. После 15 лет работы гелиопанели могут снизить производительность на 10%, а после службы в 30 лет на 20%. Хорошего качества панели могут работать в диапазоне температур -40 +90 °С.

electricavdome.ru


Смотрите также

© "Совершенные окна", 2019 г.
Перепечатка текстов, а так же полное или частичное воспроизведение других материалов сайта возможно только с согласия их авторов.

телефон: (495) 755-10-94
(многоканальный)